Abstract
Nitric oxide (NO) is synthesized in mammals where it acts as a signal molecule for neurotransmission, vasorelaxation, and cytotoxicity. The NO synthases isolated from brain and cytokine-activated macrophages are FAD- and FMN-containing flavoproteins that display considerable sequence homology to NADPH-cytochrome P-450 reductase. However, the nature of their catalytic centers is unknown. We have found that both isoenzymes contain 2 mol of iron- protoporphyrin IX/mol of enzyme homodimer. The optical and EPR spectroscopic properties of the heme groups were found to be remarkably similar to those of high-spin cytochrome P-450. The heme iron in the resting NO synthase is ferric and five-coordinate with a cysteine thiolate as the proximal axial ligand. In addition, the EPR spectra of the resting NO synthases contained a free radical signal attributable to a bound flavin semiquinone that appeared to interact magnetically with the ferric heme iron. NO production was inhibited by carbon monoxide, implying a role for the heme groups in catalysis.
Original language | English |
---|---|
Pages (from-to) | 20547-20550 |
Number of pages | 4 |
Journal | Journal of Biological Chemistry |
Volume | 267 |
Issue number | 29 |
Publication status | Published - 1992 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology