Spatial growth of the spanwise disturbance induced by a synthetic jet on separation control over an airfoil

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The spatial growth of the spanwise disturbance induced by a synthetic jet is investigated on separated-flow control around NACA0015 (Re=63; 000 and AOA = 12: 0°) using a large-eddy simulation. The synthetic jet is installed at a leading edge which is numerically modeled by a three-dimensional deforming cavity: “Cavity model”; and an artificial jet profile for a boundary condition: “Bc model”. The jet profile of the Bc model is assumed to be sinusoidally oscillated in a spanwise direction with a wave number from kyin=2π = 0 to 95. In the Cavity model case, the modes around ky=2π= 20 to 30 are selectively amplified near the synthetic jet, which remains also in the turbulent boundary layer. In the Bc model cases, the most quick turbulent transition occurs in the case with kyin=2π = 30, where the coherent spanwise mode strongly remains in the turbulent boundary layer although its aerodynamic performance is not best. This result indicates that in the present condition, the spanwise disturbance of the jet profile does not always contribute to the higher aerodynamic performance even if it provides smooth and quick turbulent transition.

Original languageEnglish
Title of host publication53rd AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103438
DOIs
Publication statusPublished - 2015 Jan 1
Externally publishedYes
Event53rd AIAA Aerospace Sciences Meeting, 2015 - Kissimmee, United States
Duration: 2015 Jan 52015 Jan 9

Publication series

Name53rd AIAA Aerospace Sciences Meeting

Other

Other53rd AIAA Aerospace Sciences Meeting, 2015
CountryUnited States
CityKissimmee
Period15/1/515/1/9

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Spatial growth of the spanwise disturbance induced by a synthetic jet on separation control over an airfoil'. Together they form a unique fingerprint.

Cite this