Spatial and temporal cellular responses to single-strand breaks in human cells

Satoshi Okano, Li Lan, Keith W. Caldecott, Toshio Mori, Akira Yasui

Research output: Contribution to journalArticlepeer-review

265 Citations (Scopus)

Abstract

DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating the cells with UV through tiny pores in membrane filters, we created SSB in restricted areas in the nucleus by the immediate action of UVDE on UV-induced DNA lesions. Cellular responses to the SSB were characterized by using antibodies and fluorescence microscopy. Upon UV irradiation, poly (ADP-ribose) synthesis occurred immediately in the irradiated area. Simultaneously, but dependent on poly (ADP-ribosyl)ation, XRCC1 was translocated from throughout the nucleus, including nucleoli, to the SSB. The BRCT1 domain of XRCC1 protein was indispensable for its poly(ADP-ribose)-dependent recruitment to the SSB. Proliferating cell nuclear antigen and the p150 subunit of chromatin assembly factor 1 also accumulated at the SSB in a detergent-resistant form, which was significantly reduced by inhibition of poly(ADP-ribose) synthesis. Our results show the importance of poly(ADP-ribosyl)ation in sequential cellular responses to SSB.

Original languageEnglish
Pages (from-to)3974-3981
Number of pages8
JournalMolecular and cellular biology
Volume23
Issue number11
DOIs
Publication statusPublished - 2003 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Spatial and temporal cellular responses to single-strand breaks in human cells'. Together they form a unique fingerprint.

Cite this