TY - JOUR
T1 - SOX2 and Rb1 in esophageal small-cell carcinoma
T2 - Their possible involvement in pathogenesis
AU - Ishida, Hirotaka
AU - Kasajima, Atsuko
AU - Kamei, Takashi
AU - Miura, Tsuyoshi
AU - Oka, Naomi
AU - Yazdani, Samaneh
AU - Ozawa, Yohei
AU - Fujishima, Fumiyoshi
AU - Sakurada, Akira
AU - Nakamura, Yasuhiro
AU - Tanaka, Yoichi
AU - Kurosumi, Masafumi
AU - Ishikawa, Yuichi
AU - Okada, Yoshinori
AU - Ohuchi, Noriaki
AU - Sasano, Hironobu
N1 - Publisher Copyright:
© 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Clinicopathological features and pathogenesis of esophageal small-cell carcinoma remain unclear. We hypothesized common cellular origin and pathogenesis in small-cell carcinoma of esophagus and lung associated with SOX2 overexpression and loss of Rb1. Expression of squamous-basal markers (CK5/6 and p40), glandular markers (CK18 and CEA), SOX2, and Rb1 were evaluated in 15 esophageal small-cell carcinomas, 46 poorly differentiated squamous cell carcinomas, and 88 small-cell lung carcinoma, as well as 16 embryonic esophagus. Esophageal small-cell carcinoma expressed higher levels of glandular markers and lower levels of squamous-basal markers than poorly differentiated squamous cell carcinoma. No significant differences were observed in immunohistochemistry profiles between small-cell carcinoma of the esophagus and the lung. SOX2 expression was high in esophageal small-cell carcinoma (70%±33% of nuclei), small-cell lung carcinoma (70%±26%), and the embryonic esophagus (75%±4%), and it was significantly lower in poorly differentiated squamous cell carcinoma (29%±28%). Rb1 expression was significantly lower in esophageal small-cell carcinoma (0.3%±1%), small-cell lung carcinoma (2%±6%), and the embryonic esophagus (7%±5%), and it was significantly higher in poorly differentiated squamous cell carcinoma (51%±24%). The immunohistochemistry profiles of small-cell carcinoma of the esophagus and the lung are highly similar. The loss of Rb1 function is a key contributor to the pathogenesis of both neoplasms. In addition, SOX2 overexpression observed in esophageal and lung small-cell carcinoma as well as in the embryonic esophagus indicated that esophageal small-cell carcinoma may arise from embryonic-like stem cells in the esophageal epithelium. The two distinct differentiation patterns (neuroendocrine and glandular) of esophageal small-cell carcinoma further support the fact that SOX2 has a pivotal role in the differentiation of pluripotent stem cells into esophageal small-cell carcinoma cells.
AB - Clinicopathological features and pathogenesis of esophageal small-cell carcinoma remain unclear. We hypothesized common cellular origin and pathogenesis in small-cell carcinoma of esophagus and lung associated with SOX2 overexpression and loss of Rb1. Expression of squamous-basal markers (CK5/6 and p40), glandular markers (CK18 and CEA), SOX2, and Rb1 were evaluated in 15 esophageal small-cell carcinomas, 46 poorly differentiated squamous cell carcinomas, and 88 small-cell lung carcinoma, as well as 16 embryonic esophagus. Esophageal small-cell carcinoma expressed higher levels of glandular markers and lower levels of squamous-basal markers than poorly differentiated squamous cell carcinoma. No significant differences were observed in immunohistochemistry profiles between small-cell carcinoma of the esophagus and the lung. SOX2 expression was high in esophageal small-cell carcinoma (70%±33% of nuclei), small-cell lung carcinoma (70%±26%), and the embryonic esophagus (75%±4%), and it was significantly lower in poorly differentiated squamous cell carcinoma (29%±28%). Rb1 expression was significantly lower in esophageal small-cell carcinoma (0.3%±1%), small-cell lung carcinoma (2%±6%), and the embryonic esophagus (7%±5%), and it was significantly higher in poorly differentiated squamous cell carcinoma (51%±24%). The immunohistochemistry profiles of small-cell carcinoma of the esophagus and the lung are highly similar. The loss of Rb1 function is a key contributor to the pathogenesis of both neoplasms. In addition, SOX2 overexpression observed in esophageal and lung small-cell carcinoma as well as in the embryonic esophagus indicated that esophageal small-cell carcinoma may arise from embryonic-like stem cells in the esophageal epithelium. The two distinct differentiation patterns (neuroendocrine and glandular) of esophageal small-cell carcinoma further support the fact that SOX2 has a pivotal role in the differentiation of pluripotent stem cells into esophageal small-cell carcinoma cells.
UR - http://www.scopus.com/inward/record.url?scp=85009973221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009973221&partnerID=8YFLogxK
U2 - 10.1038/modpathol.2016.222
DO - 10.1038/modpathol.2016.222
M3 - Article
C2 - 28106103
AN - SCOPUS:85009973221
VL - 30
SP - 660
EP - 671
JO - Modern Pathology
JF - Modern Pathology
SN - 0893-3952
IS - 5
ER -