Soliton wave in a magnetically levitated diamagnetic liquid column

Jianqiang Mai, Atsushi Ando, Shuzo Oshima, Ryuichiro Yamane, Hideya Nishiyama

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In the flow regulation of a magnetically levitated pipeless flow system, solitary waves may occur, which will lead to pressure fluctuations and surface changes of the levitated diamagnetic liquid column. The present study analyses a soliton in a magnetic pipe both theoretically and experimentally. A two-fluid model is employed here. The theoretical analysis is carried out by a one-dimensional nonviscous and nonlinear method. The experimental study was also carried out by setting two magnetic like poles to produce the magnetic field, using water as the levitated diamagnetic liquid and a diluted kerosene-base magnetic fluid as the surrounding fluid, coupled with a cam system to produce the disturbance. It is found that the magnetic pressure acting on the interface can stabilize the interface. The effects of the magnetic bond number, density ratio of the two fluids and amplitude of the soliton on the soliton wave velocity are clarified.

Original languageEnglish
Pages (from-to)614-620
Number of pages7
JournalJournal of Physics D: Applied Physics
Volume33
Issue number6
DOIs
Publication statusPublished - 2000 Mar 21

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Soliton wave in a magnetically levitated diamagnetic liquid column'. Together they form a unique fingerprint.

Cite this