Abstract
One of the most important products of solar flares is nonthermal energetic particles, which may carry up to 50% of the energy released in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with fast frequency-drifting rates, named as solar fast-drifting radio bursts (FDRBs). This work demonstrated three types of FDRBs, including type III pair bursts, narrowband stochastic spike bursts following the type III bursts, and spike-like bursts superimposed on a type II burst in an X1.3 flare on 2014 April 25. We find that although all of them have fast frequency-drifting rates, they are intrinsically different from each other in frequency bandwidth, drifting rate, and statistical distribution. We suggest that they are possibly generated from different accelerating mechanisms. The type III pair bursts may be triggered by high-energy electron beams accelerated by the flaring magnetic reconnection, spike bursts are produced by the energetic electrons accelerated by a termination shock wave triggered by the fast reconnecting plasma outflows impacting the flaring loop top, and spike-like bursts are possibly generated by nonthermal electrons accelerated by moving magnetic reconnection triggered by interaction between coronal mass ejection and the background magnetized plasma. These results may help us to understand the generation mechanism of nonthermal particles and energy release in solar flares.
Original language | English |
---|---|
Article number | 90 |
Journal | Astrophysical Journal |
Volume | 885 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 Nov 1 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Fingerprint Dive into the research topics of 'Solar Fast-drifting Radio Bursts in an X1.3 Flare on 2014 April 25'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Solar Fast-drifting Radio Bursts in an X1.3 Flare on 2014 April 25. / Tan, Baolin; Chen, Naihwa; Yang, Ya Hui; Tan, Chengming; Masuda, Satoshi; Chen, Xingyao; Misawa, H.
In: Astrophysical Journal, Vol. 885, No. 1, 90, 01.11.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Solar Fast-drifting Radio Bursts in an X1.3 Flare on 2014 April 25
AU - Tan, Baolin
AU - Chen, Naihwa
AU - Yang, Ya Hui
AU - Tan, Chengming
AU - Masuda, Satoshi
AU - Chen, Xingyao
AU - Misawa, H.
N1 - Funding Information: Baolin Tan Naihwa Chen Ya-Hui Yang Chengming Tan Satoshi Masuda Xingyao Chen H. Misawa Baolin Tan Naihwa Chen Ya-Hui Yang Chengming Tan Satoshi Masuda Xingyao Chen H. Misawa CAS Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road 20A, Chaoyang District, Beijing 100012, People’s Republic of China Graduate Institute of Space Science and Engineering, National Central University, Taoyuan, Taiwan School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan Planetary Plasma & Atmospheric Research Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan Baolin Tan, Naihwa Chen, Ya-Hui Yang, Chengming Tan, Satoshi Masuda, Xingyao Chen and H. Misawa 2019-11-01 2019-11-01 10:50:28 cgi/release: Article released bin/incoming: New from .zip Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. NSFC 11433006 NSFC 11573039 NSFC 11661161015 NSFC 11790301 NSFC 11973057 Institute for Space-Earth Environmental Research at Nagoya University and JSPS KAKENHI 18H01253 yes One of the most important products of solar flares is nonthermal energetic particles, which may carry up to 50% of the energy released in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with fast frequency-drifting rates, named as solar fast-drifting radio bursts (FDRBs). This work demonstrated three types of FDRBs, including type III pair bursts, narrowband stochastic spike bursts following the type III bursts, and spike-like bursts superimposed on a type II burst in an X1.3 flare on 2014 April 25. We find that although all of them have fast frequency-drifting rates, they are intrinsically different from each other in frequency bandwidth, drifting rate, and statistical distribution. We suggest that they are possibly generated from different accelerating mechanisms. The type III pair bursts may be triggered by high-energy electron beams accelerated by the flaring magnetic reconnection, spike bursts are produced by the energetic electrons accelerated by a termination shock wave triggered by the fast reconnecting plasma outflows impacting the flaring loop top, and spike-like bursts are possibly generated by nonthermal electrons accelerated by moving magnetic reconnection triggered by interaction between coronal mass ejection and the background magnetized plasma. These results may help us to understand the generation mechanism of nonthermal particles and energy release in solar flares. � 2019. The American Astronomical Society. Achwanden M. J. and Benz A. O. 1997 ApJ 480 825 10.1086/303995 Achwanden M. J. and Benz A. O. ApJ 0004-637X 480 2 825 1997 825 Achwanden M. J., Benz A. O., Dennis B. R. and Schwartz R. A. 1995 ApJ 455 347 10.1086/176582 Achwanden M. J., Benz A. O., Dennis B. R. and Schwartz R. A. ApJ 455 1995 347 Achwanden M. J., Benz A. O. and Schwartz R. A. 1993 ApJ 417 790 10.1086/173359 Achwanden M. J., Benz A. O. and Schwartz R. A. ApJ 417 1993 790 Armatas S., Bouratzis C., Hillaris A. et al 2019 A&A 624 A76 10.1051/0004-6361/201834982 Armatas S., Bouratzis C., Hillaris A. et al A&A 0004-6361 624 2019 A76 Bastian T. S., Benz A. O. and Gary D. E. 1998 ARA&A 36 131 10.1146/annurev.astro.36.1.131 Bastian T. S., Benz A. O. and Gary D. E. ARA&A 0066-4146 36 1998 131 Benz A. O., Bernold T. E. X. and Dennis B. R. 1983 ApJ 271 355 10.1086/161201 Benz A. O., Bernold T. E. X. and Dennis B. R. ApJ 271 1983 355 Benz A. O., Zlobec P. and Jaeggi M. 1982 A&A 109 305 Benz A. O., Zlobec P. and Jaeggi M. A&A 0004-6361 109 1982 305 Cane H. V. and Erickson W. C. 2005 ApJ 623 1180 10.1086/428820 Cane H. V. and Erickson W. C. ApJ 0004-637X 623 2 1180 2005 1180 Chen B., Bastian T. S., Shen C. C. et al 2015 Sci 350 1238 10.1126/science.aac8467 Chen B., Bastian T. S., Shen C. C. et al Sci 350 2015 1238 Chen X. Y., Yan Y. H., Tan B. L. et al 2019 ApJ 878 78 10.3847/1538-4357/ab1d64 Chen X. Y., Yan Y. H., Tan B. L. et al ApJ 0004-637X 878 2 78 2019 78 Chen Y., Du G. H., Zhao D. et al 2016 ApJL 820 L37 10.3847/2041-8205/820/2/L37 Chen Y., Du G. H., Zhao D. et al ApJL 0004-637X 820 2016 L37 Chernov G. P., Yan Y. H., Tan C. M., Chen B. and Fu Q. J. 2010 SoPh 262 149 10.1007/s11207-009-9502-y Chernov G. P., Yan Y. H., Tan C. M., Chen B. and Fu Q. J. SoPh 262 2010 149 Drake J. F., Swisdak M., Che H. and Shay M. A. 2006 Natur 443 553 10.1038/nature05116 Drake J. F., Swisdak M., Che H. and Shay M. A. Natur 443 2006 553 Dulk G. A. 1985 ARA&A 23 169 10.1146/annurev.aa.23.090185.001125 Dulk G. A. ARA&A 0066-4146 23 1985 169 Dulk G. A. and Altschuler M. D. 1971 SoPh 20 438 10.1007/BF00159777 Dulk G. A. and Altschuler M. D. SoPh 20 1971 438 Dulk G. A. and McLean D. J. 1978 SoPh 57 279 10.1007/BF00160102 Dulk G. A. and McLean D. J. SoPh 57 1978 279 Fleishman G. D., Gary D. E. and Nita G. M. 2003 ApJ 593 571 10.1086/376362 Fleishman G. D., Gary D. E. and Nita G. M. ApJ 0004-637X 593 1 571 2003 571 Iwai K., Tsuchiya F., Morioka A. and Misawa H. 2012 SoPh 277 477 10.1007/s11207-011-9919-y Iwai K., Tsuchiya F., Morioka A. and Misawa H. SoPh 277 2012 477 Lemen J. R., Title A. M., Akin D. J. et al 2012 SoPh 275 17 10.1007/s11207-011-9776-8 Lemen J. R., Title A. M., Akin D. J. et al SoPh 275 2012 17 Li B., Cairns I. H., Yan Y. H. and Robinson P. A. 2011 ApJL 738 L9 10.1088/2041-8205/738/1/L9 Li B., Cairns I. H., Yan Y. H. and Robinson P. A. ApJL 0004-637X 738 2011 L9 Lin R. P., Dennis B. R., Hurford G. J. et al 2002 SoPh 210 3 10.1023/A:1022428818870 Lin R. P., Dennis B. R., Hurford G. J. et al SoPh 210 2002 3 Lin R. P. and Hudson H. S. 1971 SoPh 17 412 10.1007/BF00150045 Lin R. P. and Hudson H. S. SoPh 17 1971 412 Lin R. P., Potter D. W., Gurnett D. A. and Scarf F. L. 1981 ApJ 251 364 10.1086/159471 Lin R. P., Potter D. W., Gurnett D. A. and Scarf F. L. ApJ 251 1981 364 Mann G., Claßen T. and Auraß H. 1995 A&A 295 775 Mann G., Claßen T. and Auraß H. A&A 0004-6361 295 1995 775 Melrose D. B. and Dulk G. A. 1982 ApJ 259 844 10.1086/160219 Melrose D. B. and Dulk G. A. ApJ 259 1982 844 Miller J. A., Cargill P. J., Emslie A. G. et al 1997 JGR 102 14631 10.1029/97JA00976 Miller J. A., Cargill P. J., Emslie A. G. et al JGR 0148-0227 102 1997 14631 Ning Z. J., Fu Q. J. and Lu Q. K. 2000 SoPh 194 137 Ning Z. J., Fu Q. J. and Lu Q. K. SoPh 194 2000 137 Reid H. A. S. and Ratcliffe H. 2014 RAA 14 773 10.1088/1674-4527/14/7/003 Reid H. A. S. and Ratcliffe H. RAA 1085-5114 14 2014 773 Robinson P. A. 1991 SoPh 134 299 10.1007/BF00152650 Robinson P. A. SoPh 134 1991 299 Robinson P. A. and Benz A. O. 2000 SoPh 194 345 10.1023/A:1005203515701 Robinson P. A. and Benz A. O. SoPh 194 2000 345 Stahli M. and Benz A. O. 1987 A&A 175 271 Stahli M. and Benz A. O. A&A 0004-6361 175 1987 271 Tan B. L. 2013 ApJ 773 165 10.1088/0004-637X/773/2/165 Tan B. L. ApJ 0004-637X 773 2 165 2013 165 Tan B. L., Karlicky M., Meszarosova H. and Huang G. L. 2016 RAA 16 74 10.1088/1674-4527/16/5/082 Tan B. L., Karlicky M., Meszarosova H. and Huang G. L. RAA 1085-5114 16 2016 74 Tan B. L., Tan C. M., Zhang Y., Meszarosova H. and Karlicky M. 2014 ApJ 780 129 10.1088/0004-637X/780/2/129 Tan B. L., Tan C. M., Zhang Y., Meszarosova H. and Karlicky M. ApJ 0004-637X 780 2 129 2014 129 Tan B. L., Zhang Y., Tan C. M. and Liu Y. Y. 2010 ApJ 723 25 10.1088/0004-637X/723/1/25 Tan B. L., Zhang Y., Tan C. M. and Liu Y. Y. ApJ 0004-637X 723 1 25 2010 25 Tang J. F., Wu D. J. and Yan Y. H. 2012 ApJ 745 134 10.1088/0004-637X/745/2/134 Tang J. F., Wu D. J. and Yan Y. H. ApJ 0004-637X 745 2 134 2012 134 Tsuneta S. and Naito T. 1998 ApJ 495 L67 10.1086/311207 Tsuneta S. and Naito T. ApJ 1538-4357 495 1 L67 1998 L67 Yan Y. H., Zhang J., Wang W. et al 2009 EM&P 104 97 10.1007/s11038-008-9254-y Yan Y. H., Zhang J., Wang W. et al EM&P 0167-9295 104 2009 97 Zharkova V. and Siversky T. 2011 ApJ 733 33 10.1088/0004-637X/733/1/33 Zharkova V. and Siversky T. ApJ 0004-637X 733 1 33 2011 33 Zheleznyakov V. V. and Zlotnik E. Y. 1975 SoPh 44 461 10.1007/BF00153225 Zheleznyakov V. V. and Zlotnik E. Y. SoPh 44 1975 461
PY - 2019/11/1
Y1 - 2019/11/1
N2 - One of the most important products of solar flares is nonthermal energetic particles, which may carry up to 50% of the energy released in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with fast frequency-drifting rates, named as solar fast-drifting radio bursts (FDRBs). This work demonstrated three types of FDRBs, including type III pair bursts, narrowband stochastic spike bursts following the type III bursts, and spike-like bursts superimposed on a type II burst in an X1.3 flare on 2014 April 25. We find that although all of them have fast frequency-drifting rates, they are intrinsically different from each other in frequency bandwidth, drifting rate, and statistical distribution. We suggest that they are possibly generated from different accelerating mechanisms. The type III pair bursts may be triggered by high-energy electron beams accelerated by the flaring magnetic reconnection, spike bursts are produced by the energetic electrons accelerated by a termination shock wave triggered by the fast reconnecting plasma outflows impacting the flaring loop top, and spike-like bursts are possibly generated by nonthermal electrons accelerated by moving magnetic reconnection triggered by interaction between coronal mass ejection and the background magnetized plasma. These results may help us to understand the generation mechanism of nonthermal particles and energy release in solar flares.
AB - One of the most important products of solar flares is nonthermal energetic particles, which may carry up to 50% of the energy released in the flaring processes. In radio observations, nonthermal particles generally manifest as spectral fine structures with fast frequency-drifting rates, named as solar fast-drifting radio bursts (FDRBs). This work demonstrated three types of FDRBs, including type III pair bursts, narrowband stochastic spike bursts following the type III bursts, and spike-like bursts superimposed on a type II burst in an X1.3 flare on 2014 April 25. We find that although all of them have fast frequency-drifting rates, they are intrinsically different from each other in frequency bandwidth, drifting rate, and statistical distribution. We suggest that they are possibly generated from different accelerating mechanisms. The type III pair bursts may be triggered by high-energy electron beams accelerated by the flaring magnetic reconnection, spike bursts are produced by the energetic electrons accelerated by a termination shock wave triggered by the fast reconnecting plasma outflows impacting the flaring loop top, and spike-like bursts are possibly generated by nonthermal electrons accelerated by moving magnetic reconnection triggered by interaction between coronal mass ejection and the background magnetized plasma. These results may help us to understand the generation mechanism of nonthermal particles and energy release in solar flares.
UR - http://www.scopus.com/inward/record.url?scp=85075231011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075231011&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab4718
DO - 10.3847/1538-4357/ab4718
M3 - Article
AN - SCOPUS:85075231011
VL - 885
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 1
M1 - 90
ER -