SLC15A4 mediates M1-prone metabolic shifts in macrophages and guards immune cells from metabolic stress

Toshihiko Kobayashi, Dat Nguyen-Tien, Yuriko Sorimachi, Yuki Sugiura, Takehiro Suzuki, Hitomi Karyu, Shiho Shimabukuro-Demoto, Tatsuki Uemura, Tadashi Okamura, Tomohiko Taguchi, Kohjiro Ueki, Norihiro Kato, Nobuhito Goda, Naoshi Dohmae, Keiyo Takubo, Makoto Suematsu, Noriko Toyama-Sorimachi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The amino acid and oligopeptide transporter Solute carrier family 15 member A4 (SLC15A4), which resides in lysosomes and is preferentially expressed in immune cells, plays critical roles in the pathogenesis of lupus and colitis in murine models. Toll-like receptor (TLR) 7/9- and nucleotide-binding oligomerization domain-containing protein 1 (NOD1)-mediated inflammatory responses require SLC15A4 function for regulating the mechanistic target of rapamycin complex 1 (mTORC1) or transporting L-Ala-γ-D-Glu-meso-diaminopimelic acid, IL-12: interleukin-12 (Tri-DAP), respectively. Here, we further investigated the mechanism of how SLC15A4 directs inflammatory responses. Proximity-dependent biotin identification revealed glycolysis as highly enriched gene ontology terms. Fluxome analyses in macrophages indicated that SLC15A4 loss causes insufficient bio-transformation of pyruvate to the tricarboxylic acid cycle, while increasing glutaminolysis to the cycle. Furthermore, SLC15A4 was required for M1-prone metabolic change and inflammatory IL-12 cytokine productions after TLR9 stimulation. SLC15A4 could be in close proximity to AMP-activated protein kinase (AMPK) and mTOR, and SLC15A4 deficiency impaired TLR-mediated AMPK activation. Interestingly, SLC15A4-intact but not SLC15A4-deficient macrophages became resistant to fluctuations in environmental nutrient levels by limiting the use of the glutamine source; thus, SLC15A4 was critical for macrophage's respiratory homeostasis. Our findings reveal a mechanism of metabolic regulation in which an amino acid transporter acts as a gatekeeper that protects immune cells' ability to acquire an M1-prone metabolic phenotype in inflammatory tissues by mitigating metabolic stress.

Original languageEnglish
Article numbere2100295118
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number33
DOIs
Publication statusPublished - 2021 Aug 17

Keywords

  • Amino acid transporter
  • Cytokine
  • Immunometabolism
  • Innate immune cell
  • Macrophage

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'SLC15A4 mediates M1-prone metabolic shifts in macrophages and guards immune cells from metabolic stress'. Together they form a unique fingerprint.

Cite this