Abstract
We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d SL(2,R) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d N = 2 supercon- formal field theory on S3, which is realized as a duality domain wall in a 4d gauge theory on S 4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmüller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.
Original language | English |
---|---|
Article number | 135 |
Journal | Journal of High Energy Physics |
Volume | 2011 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Keywords
- Chern-Theories
- Field Theories in Lower Dimensions
- Matrix Models
- Supersymmetry and Duality
ASJC Scopus subject areas
- Nuclear and High Energy Physics