Size dependences of magnetic properties and switching behavior in FePt L10 nanoparticles

S. Okamoto, O. Kitakami, N. Kikuchi, T. Miyazaki, Y. Shimada, Y. K. Takahashi

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

We have prepared epitaxial FePt L10 (001) nanoparticles covered with Ag and Pt overlayers and investigated their magnetic behaviors by means of anomalous Hall resistance measurements. The particle shapes are thin oblate spheroids with the aspect ratio (height/diameter) of 1/5. The size is ranging from 1 to 2.5 nm in height and from 5 to 30 nm in diameter. FePt L10 nanoparticles show extremely large coercivity Hk of about 70 kOe at 10 K, which is close to the anisotropy field Hk of highly ordered FePt L10. This verifies that the very strong magnetic anisotropy Ku of FePt L10 remains even in the size of several atomic layers along the c axis. For a particle diameter of Dm<20 nm, all the magnetic properties, such as the angular dependence of irreversible switching field, the magnitude of Hc, and their temperature dependence, are fully explained by the coherent rotation model, taking the thermal relaxation into account. Although both Ag- and Pt-coated particles follow the coherent rotation model, the latter always exhibits smaller Hc than the former. Such a decrease in Hc can be explained by assuming an enhancement of the effective magnetic moment caused by ferromagnetic polarization of Pt atoms at the Pt/FePt interface. As the particle size Dm exceeds 20 nm, the magnetic behaviors deviate from the ideal coherent rotation model, suggesting that the magnetization reversal mode changes from coherent to incoherent rotation. The critical diameter Dm∼20 nm at which the reversal mode changes is in good agreement with the critical diameter predicted by the micromagnetic theory.

Original languageEnglish
Article number094422
Pages (from-to)944221-944227
Number of pages7
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume67
Issue number9
Publication statusPublished - 2003 Mar 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Size dependences of magnetic properties and switching behavior in FePt L1<sub>0</sub> nanoparticles'. Together they form a unique fingerprint.

  • Cite this