Abstract
Tetranuclear FeII cubic complexes were synthesized with Schiff base ligands bridging the FeII centers. X-ray structural analyses of six ferrous cubes, [Fe4(sap)4(MeOH)4] ·2H2O (1), [Fe4(5-Br-sap)4-(MeOH) 4] (2), [Fe4(3-MeO-sap)4(MeOH) 4]·2MeOH (3), [Fe4(sae)4(MeOH) 4] (4), [Fe4(5-Br-sae)4(MeOH) 4]· MeOH (5), and [Fe4(3,5-Cl2-sae) 4(MeOH)4] (6) (R-sap and R-sae were prepared by condensation of salicylaldehyde derivatives with aminopropyl alcohol and aminoethyl alcohol, respectively) were performed, and their magnetic properties were studied. In 1-6, the alkoxo groups of the Schiff base ligands bridge four FeII ions in a μ3-mode forming [Fe4O 4] cubic cores. The Fell ions in the cubes have tetragonally elongated octahedral coordination geometries, and the equatorial coordination bond lengths in 4-6 are shorter than those in 1-3. Dc magnetic susceptibility measurements for 1-6 revealed that intramolecular ferromagnetic interactions are operative to lead an S = 8 spin ground state. Analyses of the magnetization data at 1.8 K gave the axial zero-field splitting parameters (D) of +0.81, +0.80, +1.15, -0.64, -0.66, and -0.67 cm-1 for 1-6, respectively. Ac magnetic susceptibility measurements for 4-6 showed both frequency dependent in- and out-of-phase signals, while 1-3 did not show out-of-phase signals down to 1.8 K, meaning 4-6 are single-molecule magnets (SMMs). The energy barriers to flip the spin between up- and down-spin were estimated to 28.4, 30.5, and 26.2 K, respectively, for 4-6. The bridging ligands R-sap2- in 1-3 and R-sae2- in 4-6 form six- and five-membered chelate rings, respectively, which cause different steric strain and Jahn-Teller distortions at FeII centers. The sign of the D value was discussed by using angular overlap model (AOM) calculations for irons with different coordination geometry.
Original language | English |
---|---|
Pages (from-to) | 8805-8812 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 126 |
Issue number | 28 |
DOIs | |
Publication status | Published - 2004 Jul 21 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry