Abstract
By using the semiconductor nano-pillar with a graded-dope configuration, we implemented the measurement for a single-electron transport through an individual InAs self-assembled quantum dot (SAQD). An atomic-force microscope observation showed that the SAQD had a disk-like shape with a diameter of ~30 nm. We succeeded in observing a significant diamagnetic shift of the Coulomb oscillation peak under the magnetic field applied perpendicular to the disk plane. The measurement gave us a lateral confinement energy of 14 meV and an electron effective mass of 0.039, which provided us with quantitative evidence that the constituent material of the observed quantum dot originates from the InAs SAQD.
Original language | English |
---|---|
Pages (from-to) | 506-510 |
Number of pages | 5 |
Journal | Physica E: Low-Dimensional Systems and Nanostructures |
Volume | 21 |
Issue number | 2-4 |
DOIs | |
Publication status | Published - 2004 Mar |
Externally published | Yes |
Event | Proceedings of the Eleventh International Conference on Modulation (MSS11) - Nara, Japan Duration: 2003 Jul 14 → 2003 Jul 18 |
Keywords
- Fock-Darwin state
- Quantum dot
- Self-assembled InAs dot
- Single-electron transport
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics