Abstract
Low-temperature photodissociation of oxygen from oxy-cobalt myoglobin was studied by single-crystal electron paramagnetic resonance (EPR) spectroscopy at 5 K. The photolyzed oxy-cobalt myoglobin exhibited an EPR spectrum consisting of two nonequivalent sets (species I and II) of the principal values and eigenvectors of the g tensors: g1I = 3.55, g2I = 3.47, and g3I = 2.26 for species I, and g1II = 2.04, g2II = 1.93, and g3II = 1.86 for species II, which resembled neither the deoxy nor the oxy form. Possible models of the photo-dissociated state of oxy-cobalt myoglobin are proposed by comparison with cobalt porphyrin complexes. The photolyzed product of nitric oxide-cobalt myoglobin exhibited new EPR signals at g = 4.3 and a very broad signal at around g = 2. The principal g values have been determined from the single-crystal EPR measurements: g1 = 4.39, g2 = 4.27, and g3 = 4.00. Analysis of another EPR signal around g = 2 was difficult due to its broadness. Magnetic interactions were observed. An isotropic EPR signal at g = 4.3 suggested a weakly spin-coupled system between cobaltous spin (S = ½ or ½) and nitric oxide spin (S = ½).
Original language | English |
---|---|
Pages (from-to) | 1431-1437 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 21 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1982 Jan 1 |
ASJC Scopus subject areas
- Biochemistry