Simple nanostructuring on silicon surface by means of focused beam patterning and wet etching

M. Koh, S. Sawara, T. Shinada, T. Goto, Y. Ando, I. Ohdomari

Research output: Contribution to journalConference articlepeer-review

26 Citations (Scopus)


Two simple and easy processes have been demonstrated to fabricate two-dimensional (2-D) nanostructure array on Si surfaces by using only focused beam patterning and wet etching. First, we took advantage of the enhanced etch rate (ER) of electron-beam-exposed SiO2 in HF based solution. A 30-nm thick oxide layer was shot with 30-keV focused-electron beam with spot doses ranging from 20 to 140 pC/dot. After development of SiO2 layer in 1% HF solution, the Si substrate was etched by hydrazine (N2H4H2O) to form pyramidal etch-pits. By using this process, 50-nm concave nanopyramid array (NPA) with 100-nm period can be fabricated successfully. Second, we utilized the newly found retarded ER of ion-beam-exposed Si in hydrazine. 2-D arrays of dots were written directly on the Si substrate with 60-keV Si focused-ion beam (FIB) with a dose of 5×1014 ions/cm2. The Si substrate was then dipped in hydrazine solution, where the unexposed region was selectively etched by hydrazine. By using this process, 100-nm convex NPA with 200-nm period can be fabricated easily. The performance of the proposed processes is compared in terms of pattern size, throughput and process diversity.

Original languageEnglish
Pages (from-to)599-603
Number of pages5
JournalApplied Surface Science
Publication statusPublished - 2000 Aug 1
Externally publishedYes
Event5th International Symposium on Atomically Controlled Surfaces, Interfaces and Nanostructures (ACSIN-5) - Provence, France
Duration: 1999 Jul 61999 Jul 9

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films


Dive into the research topics of 'Simple nanostructuring on silicon surface by means of focused beam patterning and wet etching'. Together they form a unique fingerprint.

Cite this