Short-term flood inundation prediction using hydrologic-hydraulic models forced with downscaled rainfall from global NWP

Do Hoai Nam, Dang Thanh Mai, Keiko Udo, Akira Mano

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

A short-term flood inundation prediction model has been formulated based on the combination of the super-tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one-dimensional (1D) hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically-based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super-tank model into the 1D hydraulic model demonstrates a minimal requirement for the calibration of rainfall-runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the 1D flood propagation model.

Original languageEnglish
Pages (from-to)5844-5859
Number of pages16
JournalHydrological Processes
Volume28
Issue number24
DOIs
Publication statusPublished - 2014 Nov 29

Keywords

  • Flow and stage prediction
  • Numerical weather prediction
  • Statistical downscaling

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint Dive into the research topics of 'Short-term flood inundation prediction using hydrologic-hydraulic models forced with downscaled rainfall from global NWP'. Together they form a unique fingerprint.

  • Cite this