Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups

Norisuke Ioku, Kazuhiro Ishige, Eiji Yanagida

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Let H:=-δ+V be a nonnegative Schrödinger operator on L2(RN), where N≥2 and V be a radially symmetric function decaying quadratically at the space infinity. In this paper we consider the Schrödinger heat semigroup e-tH and make a complete table of the decay rates of the operator norms of e-tH in the Lorentz spaces as t→∞.

Original languageEnglish
Pages (from-to)900-923
Number of pages24
JournalJournal des Mathematiques Pures et Appliquees
Volume103
Issue number4
DOIs
Publication statusPublished - 2015 Apr 1

Keywords

  • Lorentz spaces
  • Quadratically decaying potential
  • Schrödinger heat semigroups

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups'. Together they form a unique fingerprint.

Cite this