Sema3a1 guides spinal motor axons in a cell- and stage-specific manner in zebrafish

Mika Sato-Maeda, Hiroshi Tawarayama, Masuo Obinata, John Y. Kuwada, Wataru Shoji

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

In order for axons to reach their proper targets, both spatiotemporal regulation of guidance molecules and stepwise control of growth cone sensitivity to guidance molecules is required. Here, we show that, in zebrafish, Sema3a1, a secreted class 3 semaphorin, plays an essential role in guiding the caudal primary (CaP) motor axon that pioneers the initial region of the motor pathway. The expression pattern of Sema3a1 suggests that it delimits the pioneer CaP axons to the initial, common pathway via a repulsive action, but then CaP axons become insensitive to Sema3a1 beyond the common pathway. Indeed, nrp1a, which probably encodes a component of the Sema3a1 receptor, is specifically expressed by CaP during the early part of its outgrowth but not during later stages when extending into sema3a1-expressing muscle cells. To examine this hypothesis directly, expression of sema3a1 and/or nrp1a was manipulated in several ways. First, antisense knockdown of Sema3a1 induced CaP axons to branch excessively, stall and/or follow aberrant pathways. Furthermore, dynamic analysis showed they extended more lateral filopodia and often failed to pause at the horizontal myoseptal choice point. Second, antisense knockdown of Nrp1a and double knockdown of Nrp1a/Sema3a1 induced similar outgrowth defects in CaP. Third, CaP axons were inhibited by focally misexpressed sema3a1 along the initial common pathway but not along their pathway beyond the common pathway. Thus, as predicted, Sema3a1 is repulsive to CaP axons in the common region of the pathway, but not beyond the common pathway. Fourth, induced ubiquitous overexpression of sema3a1 caused the CaP axons but not the other primary motor axons to follow aberrant pathways. These results suggest that the repulsive response to Sema3a1 of the primary motor axons along the common pathway is both cell-type specific and dynamically regulated, perhaps via regulation of nrp1a.

Original languageEnglish
Pages (from-to)937-947
Number of pages11
JournalDevelopment
Volume133
Issue number5
DOIs
Publication statusPublished - 2006 Mar

Keywords

  • Axon guidance
  • Branching
  • Filopodia
  • Growth cone
  • Pausing
  • Zebrafish

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology

Fingerprint Dive into the research topics of 'Sema3a1 guides spinal motor axons in a cell- and stage-specific manner in zebrafish'. Together they form a unique fingerprint.

Cite this