Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion

Eisuke Ito, Takayuki Okatani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Citations (Scopus)

Abstract

In this paper we consider critical motion sequences (CMSs) of rolling-shutter (RS) SfM. Employing an RS camera model with linearized pure rotation, we show that the RS distortion can be approximately expressed by two internal parameters of an "imaginary" camera plus one-parameter nonlinear transformation similar to lens distortion. We then reformulate the problem as self-calibration of the imaginary camera, in which its skew and aspect ratio are unknown and varying in the image sequence. In the formulation, we derive a general representation of CMSs. We also show that our method can explain the CMS that was recently reported in the literature, and then present a new remedy to deal with the degeneracy. Our theoretical results agree well with experimental results; it explains degeneracies observed when we employ naive bundle adjustment, and how they are resolved by our method.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4512-4520
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - 2017 Nov 6
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 2017 Jul 212017 Jul 26

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period17/7/2117/7/26

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Self-calibration-based approach to critical motion sequences of rolling-shutter structure from motion'. Together they form a unique fingerprint.

Cite this