Abstract
We investigated the Schottky barrier height (SBH) behavior of binary alloy Schottky contacts on n-type zinc oxide (n-ZnO) single crystals. Pt-Ru alloy electrodes were deposited on the Zn-polar and O-polar faces of ZnO substrates by combinatorial ion-beam deposition under identical conditions. The crystal structures of the Pt-Ru alloy film changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram with decreasing Pt content. The SBH, determined from current-voltage measurements, decreased with decreasing Pt content, indicating that the SBH behavior also followed the Pt-Ru alloy phase diagram. The alloy electrodes on the Zn-polar face showed better Schottky properties than those on the O-polar face. Hard x-ray photoelectron spectroscopy revealed a difference in the interface oxidization of the Pt-Ru alloy: the interface of the O-polar face and Pt-Ru mixed phase with poor crystallinity had a more oxidized layer than that of the Zn-polar face. As a result of this oxidization, the O-polar face, Pt-Ru mixed, and Ru phases showed poor Schottky properties.
Original language | English |
---|---|
Article number | 103714 |
Journal | Journal of Applied Physics |
Volume | 107 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2010 May 15 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy(all)