Scanning tunneling microscopy/spectroscopy of dangling-bond wires fabricated on the Si(100)-2×1-H surface

Taro Hitosugi, T. Hashizume, S. Heike, H. Kajiyama, Y. Wada, S. Watanabe, T. Hasegawa, K. Kitazawa

Research output: Contribution to journalConference articlepeer-review

23 Citations (Scopus)

Abstract

We present a scanning tunneling microscopy/spectroscopy (STM/STS) study of atomic-scale dangling-bond (DB) wires on a hydrogen-terminated Si(100)-2×1-H surface. In the case of DB wires made of paired DBs, the STS shows semiconductive electronic states with a band gap of approximately 0.5 eV. The DB wires made of both single and paired DBs show a finite density of states at Fermi energy and do not show semiconductive band gaps. We have succeeded in making an atomic-scale wire that has a finite density of states at Fermi energy on a semiconductive surface. The results are in good agreement with a recent first-principles theoretical calculations.

Original languageEnglish
Pages (from-to)340-345
Number of pages6
JournalApplied Surface Science
Volume130-132
DOIs
Publication statusPublished - 1998
Externally publishedYes
EventProceedings of the 1997 4th International Symposium on Atomically Controlled Surfaces and Intefaces, ACSI-4 - Tokyo, Jpn
Duration: 1997 Oct 271997 Oct 30

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Scanning tunneling microscopy/spectroscopy of dangling-bond wires fabricated on the Si(100)-2×1-H surface'. Together they form a unique fingerprint.

Cite this