Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer

Mari Takahara, Geisa Aparecida Lopes Gonçalves Budinova, Hikaru Nakazawa, Yutaro Mori, Mitsuo Umetsu, Noriho Kamiya

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

A novel artificial cellulase was developed by conjugating a DNA aptamer to an endoglucanase catalytic domain, thereby substituting the natural carbohydrate-binding module. Circular dichroism spectroscopy and adsorption isotherm showed the binding motif of cellulose-binding DNA aptamer (CelApt) was G-quadruplex and stem-loop structures stabilized in the presence of salts, and CelApt binding preferred the amorphous region of the solid cellulose. By introducing the revealed salt-switchable cellulose-binding nature of CelApt into a catalytic domain of a cellulase, we created CelApt-catalytic domain conjugate possessing both controllable adsorption on the solid substrates and equal enzymatic activity to the wild-type cellulase. Thus potential use of a responsive DNA aptamer for biocatalysis at a solid surface was demonstrated.

Original languageEnglish
Pages (from-to)3356-3362
Number of pages7
JournalBiomacromolecules
Volume17
Issue number10
DOIs
Publication statusPublished - 2016 Oct 10

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer'. Together they form a unique fingerprint.

Cite this