TY - JOUR
T1 - Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E2 produced in the brain
AU - Tachikawa, Masanori
AU - Ozeki, Go
AU - Higuchi, Takanori
AU - Akanuma, Shin Ichi
AU - Tsuji, Kazuhiro
AU - Hosoya, Ken Ichi
PY - 2012/12
Y1 - 2012/12
N2 - An increasing level of prostaglandin (PG) E2 is involved in the progression of neuroinflammation induced by ischemia and bacterial infection. Although an imbalance in the rates of production and clearance of PGE 2 under these pathological conditions appears to affect the concentration of PGE2 in the cerebrospinal fluid (CSF), the regulatory system remains incompletely understood. The purpose of this study was to investigate the cellular system of PGE2 production via microsomal PGE synthetase-1 (mPGES-1), the inducible PGE2-generating enzyme, and PGE2 elimination from the CSF via the blood-CSF barrier (BCSFB). Immunohistochemical analysis revealed that mPGES-1 was expressed in the soma and perivascular sheets of astrocytes, pia mater, and brain blood vessel endothelial cells, suggesting that these cells are local production sites of PGE2 in the CSF. The in vivo PGE2 elimination clearance from the CSF was eightfold greater than that of d-mannitol, which is considered to reflect CSF bulk flow. This process was inhibited by the simultaneous injection of unlabeled PGE2 and β-lactam antibiotics, such as benzylpenicillin, cefazolin, and ceftriaxone, which are substrates and/or inhibitors of organic anion transporter 3 (OAT3). The characteristics of PGE2 uptake by the isolated choroid plexus were at least partially consistent with those of OAT3. OAT3 was able to mediate PGE2 transport with a Michaelis-Menten constant of 4.24 μM. These findings indicate that a system regulating the PGE2 level in the CSF involves OAT3-mediated PGE2 uptake by choroid plexus epithelial cells, acting as a cerebral clearance pathway via the BCSFB of locally produced PGE 2.
AB - An increasing level of prostaglandin (PG) E2 is involved in the progression of neuroinflammation induced by ischemia and bacterial infection. Although an imbalance in the rates of production and clearance of PGE 2 under these pathological conditions appears to affect the concentration of PGE2 in the cerebrospinal fluid (CSF), the regulatory system remains incompletely understood. The purpose of this study was to investigate the cellular system of PGE2 production via microsomal PGE synthetase-1 (mPGES-1), the inducible PGE2-generating enzyme, and PGE2 elimination from the CSF via the blood-CSF barrier (BCSFB). Immunohistochemical analysis revealed that mPGES-1 was expressed in the soma and perivascular sheets of astrocytes, pia mater, and brain blood vessel endothelial cells, suggesting that these cells are local production sites of PGE2 in the CSF. The in vivo PGE2 elimination clearance from the CSF was eightfold greater than that of d-mannitol, which is considered to reflect CSF bulk flow. This process was inhibited by the simultaneous injection of unlabeled PGE2 and β-lactam antibiotics, such as benzylpenicillin, cefazolin, and ceftriaxone, which are substrates and/or inhibitors of organic anion transporter 3 (OAT3). The characteristics of PGE2 uptake by the isolated choroid plexus were at least partially consistent with those of OAT3. OAT3 was able to mediate PGE2 transport with a Michaelis-Menten constant of 4.24 μM. These findings indicate that a system regulating the PGE2 level in the CSF involves OAT3-mediated PGE2 uptake by choroid plexus epithelial cells, acting as a cerebral clearance pathway via the BCSFB of locally produced PGE 2.
KW - blood-cerebrospinal fluid barrier
KW - clearance
KW - inflammation
KW - mPGES-1
KW - prostaglandin E
KW - prostaglandin synthase
UR - http://www.scopus.com/inward/record.url?scp=84868661468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868661468&partnerID=8YFLogxK
U2 - 10.1111/jnc.12018
DO - 10.1111/jnc.12018
M3 - Article
C2 - 22978524
AN - SCOPUS:84868661468
VL - 123
SP - 750
EP - 760
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 0022-3042
IS - 5
ER -