Role of grain boundary segregation in austenite decomposition of low-alloyed steel

S. Suzuki, M. Tanino

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

The influence of addition of small amounts of boron and nitrogen on the microstructure formed by austenite decomposition in low-alloyed manganese steels was investigated. In order to understand microstructural changes by addition of boron and nitrogen, Auger electron spectroscopy was used for analyzing prior austenite grain boundaries in steels doped with phosphorus, boron and nitrogen. The results by microstructure observation showed that the formation of Widmanstätten ferrite was suppressed by addition of a small amount of boron in the steels, whereas Widmanstätten ferrite appears to be formed again by addition of boron and nitrogen. The Auger spectra showed that small particles of boron nitride were detected on grain boundaries in steel doped with boron and nitrogen, while boron was segregated at grain boundaries in steel with boron. This indicates that segregation of boron at grain boundaries and/or sub-boundaries may suppress the formation of Widmanstätten ferrite, while the formation of boron nitride seems to be ineffective to suppression of the formation of Widmanstätten ferrite in steels doped with boron and nitrogen.

Original languageEnglish
Title of host publicationRecrystallization and Grain Growth III - Proceedings of the Third International Conference on Recrystallization and Grain Growth, ReX and GG III
PublisherTrans Tech Publications Ltd
Pages965-970
Number of pages6
EditionPART 2
ISBN (Print)087849443X, 9780878494439
DOIs
Publication statusPublished - 2007 Jan 1
Event3rd International Conference on Recrystallization and Grain Growth, ReX GG III - Jeju Island, Korea, Republic of
Duration: 2007 Jun 102007 Jun 15

Publication series

NameMaterials Science Forum
NumberPART 2
Volume558-559
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other3rd International Conference on Recrystallization and Grain Growth, ReX GG III
CountryKorea, Republic of
CityJeju Island
Period07/6/1007/6/15

Keywords

  • Austenite decomposition
  • Grain boundary segregation
  • Low-alloyed steel
  • Microstructure

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Role of grain boundary segregation in austenite decomposition of low-alloyed steel'. Together they form a unique fingerprint.

Cite this