Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade

Shinsuke Yamanda, Satoru Ebihara, Masanori Asada, Tatsuma Okazaki, Kaijun Niu, Takae Ebihara, Akemi Koyanagi, Noriko Yamaguchi, Hideo Yagita, Hiroyuki Arai

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

Delta-like 4 (DLL4) is one of the Notch ligands and plays an important role in vascular development. DLL4 blockade inhibits tumor growth by promoting nonproductive angiogenesis, which is characterized by an increase in vascular density and decrease in tissue perfusion. However, a detailed mechanism remains unclear. In this study, newly developed neutralizing antibodies against mouse and human DLL4 were used to investigate the possible involvement of VEGF-DLL4- ephrinB2 cascade in nonproductive an-giogenesis caused by DLL4 blockade. DLL4 blockade and soluble ephrinB2 treatment suppressed tumor growth and induced nonproductive angiogenesis. DLL4 was expressed in subcutaneous tumors, and DLL4 blockade suppressed ephrinB2 expression in the tumors. DLL4 blockade significantly promoted human umbilical vein endothelial cell (HUVEC) proliferation in vitro, and the effect was additive to that of VEGF. Both DLL4 blockade and VEGF significantly increased cord length and branch points in a tubular formation assay. Expression of ephrinB2 in HUVECs was enhanced by VEGF alone, and the enhancement was inhibited by DLL4 blockade. Moreover, when we studied the effect of ephrinB2 RNA interference on HUVEC tubular formation, knockdown of ephrinB2 mimicked the effect of DLL4. These results suggest that eph- rinB2 plays a crucial role in nonproductive angiogenesis caused by DLL4 blockade.

Original languageEnglish
Pages (from-to)3631-3639
Number of pages9
JournalBlood
Volume113
Issue number15
DOIs
Publication statusPublished - 2009 Apr 9

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint Dive into the research topics of 'Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade'. Together they form a unique fingerprint.

Cite this