Role of Co on the magnetic properties of Ce-substituted Nd-Fe-B hot-deformed magnets

Xin Tang, H. Sepehri-Amin, M. Matsumoto, T. Ohkubo, K. Hono

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

In this paper, we report for the first time improved hard magnetic properties of Ce-substituted Nd-Fe-B based anisotropic permanent magnet despite the expected reduction of intrinsic hard magnetic properties of (Nd1-xCex)2Fe14B compound for x > 0. With increasing Ce substitution, x, from 0 to 0.1, the coercivity (μ0Hc) increased from 1.36 T to 1.44 T while the remanent magnetization (Jr) remains to be 1.49 T when the magnets contain Co. Further increase in x decreases the remanent magnetization and coercivity. The ab initio calculations show that the magnetization would not be degraded if the Ce substitutes Nd at 4 g site in the Co-containing magnets, which is found to be the case by atom-resolved STEM-EDS mapping. The enhancement of coercivity of the sample with x = 0.1 originates from higher rare earth concentration in the grain boundary phase, resulting stronger pinning force against reversed domain wall motion. However, the improvement of hard magnetic properties with Ce substitution for Nd was not found in Co-free compounds.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalActa Materialia
Volume175
DOIs
Publication statusPublished - 2019 Aug 15
Externally publishedYes

Keywords

  • Ce substitution
  • Coercivity
  • Hot-deformed magnets
  • Low-cost
  • Remanence

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Role of Co on the magnetic properties of Ce-substituted Nd-Fe-B hot-deformed magnets'. Together they form a unique fingerprint.

Cite this