Rheological behavior and empirical model of simulated foaming slag

Kenta Yamashita, Sohei Sukenaga, Michitaka Matsuo, Noritaka Saito, Kunihiko Nakashima

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)

    Abstract

    The slags and fluxes found in modern steelmaking convertors all contain finely dispersed gas phases, which are generated by the refining reaction used to decarburize the molten iron. The frothing effect that is often generated as a result of these gasses can often prove to be a fatal obstacle in the efficient operation of the converter. In the present study, a simulated slag foam was produced by dispersing N 2 bubbles in silicone oil. The effect of varying the volume fraction and bubble size of the dispersed gas phase, the shear rate, and the viscosity of the liquid phase, was then systematically investigated by measuring the viscosity of the N 2 bubble dispersed silicone oil with a rotating viscometer. This found that the relative viscosity is increased as the volume fraction of the gas phase is increased, ultimately transitioning from a Newtonian to pseudo-plastic fluid at higher gas phase rates. In addition, an empirical model for the viscosity of the slag foam was developed by modifying the Einstein-Roscoe equation, with this model capable of reproducing the variation in relative viscosity with various gas phase rates, shear rates, and bubble sizes.

    Original languageEnglish
    Pages (from-to)2064-2070
    Number of pages7
    JournalIsij International
    Volume54
    Issue number9
    DOIs
    Publication statusPublished - 2014 Jan 1

    Keywords

    • Empirical modeling
    • Liquid/gas foam
    • Non-newtonian fluid
    • Shear rate
    • Viscosity

    ASJC Scopus subject areas

    • Mechanics of Materials
    • Mechanical Engineering
    • Metals and Alloys
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'Rheological behavior and empirical model of simulated foaming slag'. Together they form a unique fingerprint.

    Cite this