Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)–center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM–COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM–COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

Original languageEnglish
Article numbere0179817
JournalPloS one
Volume12
Issue number6
DOIs
Publication statusPublished - 2017 Jun

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds'. Together they form a unique fingerprint.

Cite this