Relationship Between the Locations of the Midlatitude Trough and Plasmapause Using GNSS-TEC and Arase Satellite Observation Data

Atsuki Shinbori, Yuichi Otsuka, Takuya Tsugawa, Michi Nishioka, Atsushi Kumamoto, Fuminori Tsuchiya, Shoya Matsuda, Yoshiya Kasahara, Ayako Matsuoka

Research output: Contribution to journalArticlepeer-review

Abstract

Relationship between the locations of the midlatitude trough minimum in the ionosphere and plasmapause in the inner magnetosphere has been statistically investigated using global navigation satellite system (GNSS)-total electron content (TEC) and electron density data obtained from the Arase satellite from March 23, 2017 to May 31, 2020. In this analysis, we identify the midlatitude trough minimum as a minimum value of GNSS-TEC at subauroral and midlatitude regions, and determine the plasmapause as an electron density decrease by a factor of 5 or more within ΔL < 0.5 in the inner magnetosphere. As a result, the plasmapause does not always coincide with the midlatitude trough minimum in all magnetic local time (MLT) sectors under all geomagnetic conditions. During the geomagnetically quiet periods, the midlatitude trough minimum is located at higher and lower geomagnetic latitudes (GMLATs) of the plasmapause in the MLT ranges of 5–21 and 21–5 h, respectively. This implies that both the features could not be on the same magnetic field line. On the other hand, during the storm main phase, the midlatitude trough minimum and plasmapause move toward a low-latitude region with day-night and dawn-dusk asymmetries and the correlation becomes highest, compared with that under other geomagnetic conditions. Especially, both the features mapped on the ionosphere at a height of 300 km exist near GMLAT in the afternoon-midnight sectors. This suggests that the midlatitude trough and plasmapause are formed at almost the same location due to an enhanced subauroral polarization stream during the storm main phase.

Original languageEnglish
Article numbere2020JA028943
JournalJournal of Geophysical Research: Space Physics
Volume126
Issue number5
DOIs
Publication statusPublished - 2021 May

Keywords

  • Arase satellite
  • GNSS-TEC
  • electric field
  • geomagnetic storm
  • midlatitude trough
  • plasmapause

ASJC Scopus subject areas

  • Space and Planetary Science
  • Geophysics

Fingerprint

Dive into the research topics of 'Relationship Between the Locations of the Midlatitude Trough and Plasmapause Using GNSS-TEC and Arase Satellite Observation Data'. Together they form a unique fingerprint.

Cite this