Relation between left atrial pressure and the corresponding pulse pressure in the helical flow total artificial heart

Sheng Yuan Wu, Itsuro Saito, Takashi Isoyama, Yusuke Inoue, Kohei Ishii, Masami Sato, Shintaro Hara, Kyohei Hosoda, Koki Ariyoshi, Xinyang Li, Hidemoto Nakagawa, Toshiya Ono, Yusuke Abe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The present control method used in our helical flow total artificial heart (HFTAH) would only need four parameters. Nowadays, gauge pressure sensors are being used to obtain the pressure needed for control parameters. Nevertheless, there are also many following problems such as calibration, maintenance, offset drift and infection due to the skin-penetrative lines for the usage of gauge pressure sensor. Therefore, it is preferable to find another substitutional way instead of the gauge sensor to measure the pressure. In addition, with an eye to completing an implantable HFTAH, we would like to do without any lines through the experiment animal. Therefore, it was confirmed in this study that whether there is a relation between the left atrial pressure (LAP) and its pulse pressure (amplitude). Subsequently the mean value of LAP and its amplitude were quantified. There are two methods used in this study to process the data. Method one, frequency spectrum analysis, is to quantify the signals by getting the absolute value of amplitude for a fixed heartbeat analysis. Method two, by using the synchronous detection method, it is postulated to be more applicable to variant heartbeat data with 1/R control. By the relation of LAP and the pulse pressure acquired in the above two methods, as long as the amplitude of LAP is known by the absolute pressure sensor, it's able to obtain the mean value of LAP (for it suggests a linear relation). Therefore the characteristic could substitute one of the control parameter (that is the LAP), and the other three parameters will be acquired by estimation thus it doesn't need to measure them additionally. Consequently, it is expected that acquiring LAP by absolute pressure sensor for one of the control parameters could attain to an implantable HFTAH.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages671-674
Number of pages4
DOIs
Publication statusPublished - 2013 Oct 31
Externally publishedYes
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: 2013 Jul 32013 Jul 7

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
CountryJapan
CityOsaka
Period13/7/313/7/7

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Relation between left atrial pressure and the corresponding pulse pressure in the helical flow total artificial heart'. Together they form a unique fingerprint.

Cite this