Abstract
Object. Clinical application of the convection-enhanced delivery (CED) technique is currently limited by low infusion speed and reflux of the delivered agent. The authors developed and evaluated a new step-design cannula to overcome present limitations and to introduce a rapid, reflux-free CED method for future clinical trials. Methods. The CED of 0.4% trypan blue dye was performed in agarose gel to test cannula needles for distribution and reflux. Infusion rates ranging from 0.5 to 50 ml/minute were used. Agarose gel findings were translated into a study in rats and then in cynomolgus monkeys (Macaca fascicularis) by using trypan blue and liposomes to confirm the efficacy of the reflux-free step-design cannula in vivo. Results of agarose gel studies showed reflux-free infusion with high flow rates using the step-design cannula. Data from the study in rats confirmed the agarose gel findings and also revealed increasing tissue damage at a flow rate above 5-μl/minute. Robust reflux-free delivery and distribution of liposomes was achieved using the step-design cannula in brains in both rats and nonhuman primates. Conclusions. The authors developed a new step-design cannula for CED that effectively prevents reflux in vivo and maximizes the distribution of agents delivered in the brain. Data in the present study show reflux-free infusion with a constant volume of distribution in the rat brain over a broad range of flow rates. Reflux-free delivery of liposomes into nonhuman primate brain was also established using the cannula. This step-design cannula may allow reflux-free distribution and shorten the duration of infusion in future clinical applications of CED in humans.
Original language | English |
---|---|
Pages (from-to) | 923-929 |
Number of pages | 7 |
Journal | Journal of neurosurgery |
Volume | 103 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2005 Nov |
Externally published | Yes |
Keywords
- Central nervous system
- Convection-enhanced delivery
- Liposome
- Macaca fascicularis
- Rat
- Reflux
- Step-design cannula
ASJC Scopus subject areas
- Surgery
- Clinical Neurology