Reconsidering inter- and intra-limb coordination mechanisms in quadruped locomotion

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Versatile gait patterns are observed in quadrupeds according to the locomotion speed, environmental conditions, and animal species. These gait patterns are generated via inter- and intra-limb coordination mechanisms, both of which are controlled in part by an intraspinal neural network called the central pattern generator (CPG). Previous CPG-based models mainly focused on the inter-limb coordination mechanisms and not on the intra-limb coordination mechanisms, although both of them should play a pivotal role in generating various gait patterns. In this study, we present an autonomous decentralized control scheme for quadruped locomotion wherein inter- and intra-limb coordination mechanisms are well coupled. Simulation results show that the quadruped exhibits transitioning between walking and running and the ability to adapt to changes in body properties by appropriately modifying the phase relationship among body points through well-balanced coupling of the inter- and intra-limb coordination mechanisms. We also present a physical robot that we are currently developing.

Original languageEnglish
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
Pages4873-4878
Number of pages6
DOIs
Publication statusPublished - 2012 Dec 1
Event25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Duration: 2012 Oct 72012 Oct 12

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
CountryPortugal
CityVilamoura, Algarve
Period12/10/712/10/12

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Reconsidering inter- and intra-limb coordination mechanisms in quadruped locomotion'. Together they form a unique fingerprint.

Cite this