Abstract
We analyze the nonlinear carrier transport in the gated graphene-phosphorene (G-P) hybrid structures - the G-P field-effect transistors using a phenomenological model. This model assumes that due to high carrier densities in the G-P-channel, the carrier system, including the electrons and holes in both the G- and P-layers, is characterized by a single effective temperature. We demonstrate that a strong electric-field dependence of the G-P-channel conductivity and substantially non-linear current-voltage characteristics, exhibiting a negative differential conductivity, are associated with the carrier heating and the real-space carrier transfer between the G- and P-layers. The predicted features of the G-P-systems can be used in the detectors and sources of electromagnetic radiation and in the logical circuits.
Original language | English |
---|---|
Article number | 114501 |
Journal | Journal of Applied Physics |
Volume | 124 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2018 Sep 21 |
ASJC Scopus subject areas
- Physics and Astronomy(all)