Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (M w 9.0)

Yusaku Ohta, Tatsuya Kobayashi, Hiroaki Tsushima, Satoshi Miura, Ryota Hino, Tomoji Takasu, Hiromi Fujimoto, Takeshi Iinuma, Kenji Tachibana, Tomotsugu Demachi, Toshiya Sato, Mako Ohzono, Norihito Umino

Research output: Contribution to journalArticlepeer-review

153 Citations (Scopus)

Abstract

Real-time crustal deformation monitoring is extremely important for achieving rapid understanding of actual earthquake scales, because the measured permanent displacement directly gives the true earthquake size (seismic moment, Mw) information, which in turn, provides tsunami forecasting. We have developed an algorithm to detect/estimate static ground displacements due to earthquake faulting from real-time kinematic GPS (RTK-GPS) time series. The new algorithm identifies permanent displacements by monitoring the difference of a short-term average (STA) to a long-term average (LTA) of the GPS time series. We assessed the noise property and precision of the RTK-GPS time series with various baseline length conditions and orbits and discerned that the real-time ephemerides based on the International GNSS Service (IGS) are sufficient for crustal deformation monitoring with long baselines up to ∼1,000 km. We applied the algorithm to data obtained in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) to test the possibility of coseismic displacement detections, and further, we inverted the obtained displacement fields for a fault model; the inversion estimated a fault model with M w 8.7, which is close to the actual Mw of 9.0, within five minutes from the origin time. Once the fault model is estimated, tsunami waveforms can be immediately synthesized using pre-computed tsunami Green's functions. The calculated waveforms showed good agreement with the actual tsunami observations both in arrival times and wave heights, suggesting that the RTK-GPS data by our algorithm can provide reliable rapid tsunami forecasting that can complement existing tsunami forecasting systems based on seismic observations.

Original languageEnglish
Article numberB02311
JournalJournal of Geophysical Research: Solid Earth
Volume117
Issue number2
DOIs
Publication statusPublished - 2012 Feb 1

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (M <sub>w</sub> 9.0)'. Together they form a unique fingerprint.

Cite this