Quantum thermal Hall effect of Majorana fermions on the surface of superconducting topological insulators

Yosuke Shimizu, Ai Yamakage, Kentaro Nomura

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

We study the quantum anomalous thermal Hall effect in a topological superconductor, which possesses an integer bulk topological number and supports Majorana excitations on the surface. To realize the quantum thermal Hall effect, a finite gap at the surface is induced by applying an external magnetic field or by the proximity effects with magnetic materials or s-wave superconductors with complex pair potentials. Basing on the lattice model Hamiltonian for superconducting states in Cu-doped Bi2Se3, we compute the thermal Hall conductivity as a function of various parameters such as the chemical potential, the pair potential, and the spin-orbit coupling-induced band gap. It is argued that the bulk topological invariant corresponds to the quantization rule of the thermal Hall conductivity induced by complex s-wave pair potentials.

Original languageEnglish
Article number195139
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number19
DOIs
Publication statusPublished - 2015 May 26

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Quantum thermal Hall effect of Majorana fermions on the surface of superconducting topological insulators'. Together they form a unique fingerprint.

Cite this