Quantum critical phenomena in heavy fermion compound YbIr 2Zn20

Fuminori Honda, Shinichi Yasui, Shingo Yoshiuchi, Tetsuya Takeuchi, Rikio Settai, Yoshichika Onuki

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

We measured the electrical resistivity under pressure and magnetic field for a heavy fermion compound YbIr2Zn20 with a cubic cage structure. Metamagnetic transition, which is characteristic in the heavy fermion compounds, occurs at the magnetic field Hm = 97 kOe for H ∥ 〈100〉 at ambient pressure, shifts to lower magnetic fields with increasing pressure P, and becomes zero at the critical pressure Pc ≃ 5:2 GPa. From this experiment, we noted that the metamagnetic transition field Hm is a good tuning parameter to approach the quantum critical point. Correspondingly, the A value of the electrical resistivity ρ = ρ0 + AT2 in the Fermi liquid relation under magnetic field indicates a peak structure at Hm and increases extremely in magnitude from A = 0:29μΩ·cm/K2 at ambient pressure to 380μΩ·cm/K2 at 5.0 GPa under 0kOe. The present large A value at 5.0 GPa is, however, strongly reduced in magnetic field: 1.45μΩ·cm/K2 at 80kOe. It is also noted that the residual resistivity is enhanced at 5.0 and 5.5 GPa, but the enhanced resistivity is strongly reduced in magnetic fields. These results indicate that electronic instability is realized at around Pc ≃ 5.2 GPa.

Original languageEnglish
Article number083709
Journaljournal of the physical society of japan
Volume79
Issue number8
DOIs
Publication statusPublished - 2010 Aug 1
Externally publishedYes

Keywords

  • Heavy fermion metamagnetism
  • High pressure
  • Quantum critical point
  • YbIrZn

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Quantum critical phenomena in heavy fermion compound YbIr <sub>2</sub>Zn<sub>20</sub>'. Together they form a unique fingerprint.

Cite this