Quantum chemical molecular dynamics simulation on catalytic reaction dynamics of methanol synthesis process

Momoji Kubo, Minako Ando, Satoshi Sakahara, Changho Jung, Kotaro Seki, Tomonori Kusagaya, Akira Endou, Seiichi Takami, Akira Imamura, Akira Miyamoto

Research output: Contribution to journalConference articlepeer-review

Abstract

The tight-binding quantum chemical molecular dynamics simulator was shown to be very effective in simulating the catalytic reaction dynamics on large catalyst model at reaction temperatures, which could not be performed by regular first-principles molecular dynamics. The CO adsorption structure on the Pd3 cluster was presented. Comparison of some distances and atomic charges calculated by the new simulator with those obtained by the static first-principles calculation. simulator results showed good agreement. The simulator had high accuracy, similar to the first-principles calculation. After the validity of our parameterization procedure was confirmed, a quantum chemical molecular dynamics simulation of the CO adsorption on Pd surface model was carried out. Pd(lll) surface was employed as the catalyst, and the calculation was performed under three-dimensional periodic boundary condition. Vibrational frequency of CO molecule adsorbed on the Pd surface was calculated). Simulation results agreed well with the experimental results. Results of quantum chemical molecular dynamics simulation to the H2 adsorption and the methanol synthesis reaction dynamics on the large Pd catalyst model and application of the tight-binding quantum chemical molecular dynamics simulator to the Cu/ZnO methanol synthesis catalyst were presented.

Original languageEnglish
Pages (from-to)82-83
Number of pages2
JournalACS Division of Fuel Chemistry, Preprints
Volume48
Issue number1
Publication statusPublished - 2003 Mar
EventProceedings of the 2003 SPE/EPA/DOE Exploration Production Environmental Conference - San Antonio, TX, United States
Duration: 2003 Mar 102003 Mar 12

ASJC Scopus subject areas

  • Energy(all)

Fingerprint

Dive into the research topics of 'Quantum chemical molecular dynamics simulation on catalytic reaction dynamics of methanol synthesis process'. Together they form a unique fingerprint.

Cite this