Quantitative imaging of injectant mole fraction and density in supersonic mixing

Hidemi Takahashi, Shuzo Ikegami, Hiroki Oso, Goro Masuya, Mitsutomo Hirota

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

The fluorescence ratio technique for processing planar laser-induced fluorescence data was generalized for quantitative imaging of the injectant mole fraction and extended to quantify the density distributions in a nonreacting supersonic mixing flowfield. The original fluorescence ratio approach was first developed by Hartfleld et al. (Hartfleld, R. J., Jr., Abbitt, J. D., III, and McDaniel, J. C., "Injectant Mole Fraction Imaging in Compressible Mixing Flow Using Planar Laser-Induced Iodine Fluorescence," Optics Letters, Vol. 1, No. 16, Aug. 1989, pp. 850-852.) for tests in a special closed-loop wind tunnel to eliminate the effects of thermodynamic property variations on planar laser-induced fluorescence signals in compressible flowflelds. This approach provided us a quantitative means of planar mole-fraction measurement; however, it implicitly assumed that the tracer molecules were seeded at the same fraction in both the main and the secondary flows. In the present study, we generalized the Hartfleld et al. method by considering differences in the tracer-seeding rates for obtaining planar images of mole fraction and density. Experimental validation of the new method was carried out in a mixing flowfield formed by sonic transverse injection into a Mach 1.9 supersonic airstream. The injectant mole-fraction distribution obtained from planar laser-induced fluorescence data processed by our new approach showed better agreement with the gas-sampling data than one based on the Hartfleld et al. method. The density distribution was verified by comparison with the theoretical density ratio across the oblique shock wave.

Original languageEnglish
Pages (from-to)2935-2943
Number of pages9
JournalAIAA journal
Volume46
Issue number11
DOIs
Publication statusPublished - 2008 Nov

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Quantitative imaging of injectant mole fraction and density in supersonic mixing'. Together they form a unique fingerprint.

Cite this