Quadratic nonlinear Klein-Gordon equation in one dimension

Nakao Hayashi, Pavel I. Naumkin

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

We study the initial value problem for the quadratic nonlinear Klein-Gordon equation vtt + v - vxx = λv 2, t ∈ R, x ∈ R, with initial conditions v(0, x) = v0(x), vt(0, x) = v1(x), x ∈ R, where v0 and v1 are real-valued functions, λ ∈ R. Using the method of normal forms of Shatah ["Normal forms and quadratic nonlinear Klein-Gordon equations," Commun. Pure Appl. Math. 38, 685-696 (1985)], we obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data, which was assumed in the previous work of J.-M. Delort ["Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi-linéaire á données petites en dimension 1," Ann. Sci. Ec. Normale Super. 34(4), 1-61 (2001)].

Original languageEnglish
Article number103711
JournalJournal of Mathematical Physics
Volume53
Issue number10
DOIs
Publication statusPublished - 2012 Sep 12
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Dive into the research topics of 'Quadratic nonlinear Klein-Gordon equation in one dimension'. Together they form a unique fingerprint.

Cite this