TY - JOUR
T1 - Pt distribution-controlled Ni-Pt nanocrystalsviaan alcohol reduction technique for the oxygen reduction reaction
AU - Taniguchi, Kaneyuki
AU - Cuya Huaman, Jhon L.
AU - Iwata, Daichi
AU - Yokoyama, Shun
AU - Matsumoto, Takatoshi
AU - Suzuki, Kazumasa
AU - Miyamura, Hiroshi
AU - Balachandran, Jeyadevan
N1 - Funding Information:
The authors would like to acknowledge Dr S. Maenosono in the School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) for the assistance in TEM and X-ray spectroscopy (EDS) elemental mapping measurements. This study was supported by the Grant-in-Aid for the promotion and enhancement of education and research from the University of Shiga Prefecture (2019).
Publisher Copyright:
© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021.
PY - 2021/7/7
Y1 - 2021/7/7
N2 - Alloying Pt with transition elements as electrodes in fuel cells has been proposed to solve the CO poisoning effect besides cost-benefit. Consequently, the use of Ni-Pt nanoparticles (NPs) has been proved to be effective among other transition metals such as Co and Fe. Though there are some reports on the synthesis of nanometer-scale particles, optimization of their composition has scarcely been reported. Thus, in this study, the influence of Pt atoms’ elemental distribution on the catalytic activities of Ni-Pt alloy NPs was investigated by measuring the oxygen reduction reaction (ORR) in acidic medium. Ni-Pt NPs with Pt concentrations between 7 and 73 at% were synthesized by an alcohol reduction methodviathe oleylamine complexation of Pt for controlling the size, shape and composition. Ni74Pt26alloy NPs exhibited the highest catalytic performance, and their mass and specific activities were about 5.1 and 8 times, respectively, that of the commercial Pt catalyst. Moreover, in order to enhance the stability and durability of the particles, Pt-coated Ni74Pt26alloy NPs were also successfully synthesized by modifying the process to facilitate the heterogeneous nucleation of Pt on the particle surface expecting coherent and ligand effects. The activity of Pt-coated Ni74Pt26NPs was about 2 times that of the commercially available catalyst but was almost 0.5 times that of Ni74Pt26particles. The durability was enhanced and comparable to that of the commercial Pt catalyst, suggesting that Pt coating on Ni-Pt alloy nanoparticles could be the design criterion for a highly reactive and cost-effective catalyst.
AB - Alloying Pt with transition elements as electrodes in fuel cells has been proposed to solve the CO poisoning effect besides cost-benefit. Consequently, the use of Ni-Pt nanoparticles (NPs) has been proved to be effective among other transition metals such as Co and Fe. Though there are some reports on the synthesis of nanometer-scale particles, optimization of their composition has scarcely been reported. Thus, in this study, the influence of Pt atoms’ elemental distribution on the catalytic activities of Ni-Pt alloy NPs was investigated by measuring the oxygen reduction reaction (ORR) in acidic medium. Ni-Pt NPs with Pt concentrations between 7 and 73 at% were synthesized by an alcohol reduction methodviathe oleylamine complexation of Pt for controlling the size, shape and composition. Ni74Pt26alloy NPs exhibited the highest catalytic performance, and their mass and specific activities were about 5.1 and 8 times, respectively, that of the commercial Pt catalyst. Moreover, in order to enhance the stability and durability of the particles, Pt-coated Ni74Pt26alloy NPs were also successfully synthesized by modifying the process to facilitate the heterogeneous nucleation of Pt on the particle surface expecting coherent and ligand effects. The activity of Pt-coated Ni74Pt26NPs was about 2 times that of the commercially available catalyst but was almost 0.5 times that of Ni74Pt26particles. The durability was enhanced and comparable to that of the commercial Pt catalyst, suggesting that Pt coating on Ni-Pt alloy nanoparticles could be the design criterion for a highly reactive and cost-effective catalyst.
UR - http://www.scopus.com/inward/record.url?scp=85108895474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108895474&partnerID=8YFLogxK
U2 - 10.1039/d1nj01360b
DO - 10.1039/d1nj01360b
M3 - Article
AN - SCOPUS:85108895474
SN - 1144-0546
VL - 45
SP - 11183
EP - 11191
JO - New Journal of Chemistry
JF - New Journal of Chemistry
IS - 25
ER -