Pt distribution-controlled Ni-Pt nanocrystalsviaan alcohol reduction technique for the oxygen reduction reaction

Kaneyuki Taniguchi, Jhon L. Cuya Huaman, Daichi Iwata, Shun Yokoyama, Takatoshi Matsumoto, Kazumasa Suzuki, Hiroshi Miyamura, Jeyadevan Balachandran

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Alloying Pt with transition elements as electrodes in fuel cells has been proposed to solve the CO poisoning effect besides cost-benefit. Consequently, the use of Ni-Pt nanoparticles (NPs) has been proved to be effective among other transition metals such as Co and Fe. Though there are some reports on the synthesis of nanometer-scale particles, optimization of their composition has scarcely been reported. Thus, in this study, the influence of Pt atoms’ elemental distribution on the catalytic activities of Ni-Pt alloy NPs was investigated by measuring the oxygen reduction reaction (ORR) in acidic medium. Ni-Pt NPs with Pt concentrations between 7 and 73 at% were synthesized by an alcohol reduction methodviathe oleylamine complexation of Pt for controlling the size, shape and composition. Ni74Pt26alloy NPs exhibited the highest catalytic performance, and their mass and specific activities were about 5.1 and 8 times, respectively, that of the commercial Pt catalyst. Moreover, in order to enhance the stability and durability of the particles, Pt-coated Ni74Pt26alloy NPs were also successfully synthesized by modifying the process to facilitate the heterogeneous nucleation of Pt on the particle surface expecting coherent and ligand effects. The activity of Pt-coated Ni74Pt26NPs was about 2 times that of the commercially available catalyst but was almost 0.5 times that of Ni74Pt26particles. The durability was enhanced and comparable to that of the commercial Pt catalyst, suggesting that Pt coating on Ni-Pt alloy nanoparticles could be the design criterion for a highly reactive and cost-effective catalyst.

Original languageEnglish
Pages (from-to)11183-11191
Number of pages9
JournalNew Journal of Chemistry
Volume45
Issue number25
DOIs
Publication statusPublished - 2021 Jul 7

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Pt distribution-controlled Ni-Pt nanocrystalsviaan alcohol reduction technique for the oxygen reduction reaction'. Together they form a unique fingerprint.

Cite this