Protein monoubiquitylation: Targets and diverse functions

Tadashi Nakagawa, Keiko Nakayama

Research output: Contribution to journalReview articlepeer-review

20 Citations (Scopus)

Abstract

Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2-terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.

Original languageEnglish
Pages (from-to)543-562
Number of pages20
JournalGenes to Cells
Volume20
Issue number7
DOIs
Publication statusPublished - 2015 Jul 1

ASJC Scopus subject areas

  • Genetics
  • Cell Biology

Fingerprint Dive into the research topics of 'Protein monoubiquitylation: Targets and diverse functions'. Together they form a unique fingerprint.

Cite this