Properties of single RuO2 layer embedded in SrTiO3

T. Harada, C. R. Hughes, R. Ashoori, A. V. Boris, H. Hilgenkamp, M. E. Holtz, L. Li, J. Mannhart, D. A. Muller, D. G. Schlom, A. Soukiassian, X. R. Wang, H. Boschker

Research output: Chapter in Book/Report/Conference proceedingConference contribution


A two-dimensional ferromagnet is an interesting system both for basic understanding of magnetism and for spintronic applications. However, making such a system is not easy as ferromagnetism becomes more and more unstable with reducing the thickness of a ferromagnet. For example, in oxide systems such as SrRuO3, La1-xSrxMnO3, etc, ferromagnetism is lost around the thickness of a few unit cells [1, 2]. Recent theoretical studies have shown that a single SrRuO3 layer can exhibit half-metallicity when it is sandwiched between SrTiO3 lattices [3, 4]. The conduction electrons are predicted to exist only in RuO2 layers, which means that the system is a two-dimensional half-metal. In this work, in order to demonstrate the theoretical prediction, we have fabricated high-quality SrRuO3/SrTiO3 superlattices using molecular beam epitaxy. Magnetic and transport measurements show a clear signature of ferromagnetism and conductivity.

Original languageEnglish
Title of host publication2015 IEEE International Magnetics Conference, INTERMAG 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479973224
Publication statusPublished - 2015 Jul 14
Externally publishedYes
Event2015 IEEE International Magnetics Conference, INTERMAG 2015 - Beijing, China
Duration: 2015 May 112015 May 15

Publication series

Name2015 IEEE International Magnetics Conference, INTERMAG 2015


Other2015 IEEE International Magnetics Conference, INTERMAG 2015

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Surfaces, Coatings and Films


Dive into the research topics of 'Properties of single RuO2 layer embedded in SrTiO3'. Together they form a unique fingerprint.

Cite this