Abstract
In this study, the newly designed bipolar plate for proton exchange membrane fuel cells (PEMFC) was produced by spray-coating the Ni 65Cr15P16B4 metallic glassy alloy on Al plate. The Ni65Cr15P16B4 metallic glass was adopted as a coating material because of its excellent corrosion resistance and the high velocity oxy-fuel (HVOF) spray coating was used for the metallic glass deposition on the Al plates having a bipolar plate flow field. The corrosion resistance of the Ni65Cr15P 16B4 glassy alloy film produced by the HVOF spray-coating was studied under simulated PEMFC environments. As a result, the Ni 65Cr15P16B4 glassy alloy film showed lower corrosion current density than the high-corrosion-resistant stainless steel SUS316L. Then, the electricity generation tests with the single cell having the Ni65Cr15P16B4 glassy alloy-coated bipolar plates produced in this study were conducted. As a result, the single cell with the metallic glass-coated bipolar plates showed very high I-V performance as well as the cell with the carbon bipolar plates. The long time durability tests for 24 h were also conducted at the constant current density of 200mA·cm-2. As a result, the single cell with the glass-coated bipolar plates showed no voltage drop during the test. So, it was found in this study that the Ni65Cr15P16B 4 glassy alloy-coated bipolar plate produced by the HVOF spray-coating have a potential for practical use for the fuel cells.
Original language | English |
---|---|
Pages (from-to) | 1609-1613 |
Number of pages | 5 |
Journal | Materials Transactions |
Volume | 51 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2010 Sep |
Keywords
- Bipolar plate
- High velocity oxygen-fuel spray coating
- Metallic glass
- Proton exchange membrane fuel cell
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering