Production of Gasoline Fuel from Alga-Derived Botryococcene by Hydrogenolysis over Ceria-Supported Ruthenium Catalyst

Yosuke Nakaji, Shin Ichi Oya, Hideo Watanabe, Makoto M. Watanabe, Yoshinao Nakagawa, Masazumi Tamura, Keiichi Tomishige

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Hydrogenolysis of hydrogenated botryococcene (Hy-Bot) was conducted over various supported Ru catalysts, Ir/SiO2, and Pt/SiO2–Al2O3. Ru/CeO2 with very high dispersion showed the highest yield (70 %) of gasoline-range (C5–C12) alkanes at 513 K. The main gasoline-range products were dimethylalkanes. This yield is comparable to or higher than the gasoline yields from botryococcene in the literature, which were obtained at much higher temperature. Ir/SiO2 also showed a high fuel yield, but the activity was much lower than that with the Ru catalysts. The reaction over Pt/SiO2–Al2O3 slowed down before total conversion of Hy-Bot was achieved. Ru/CeO2 was stable in the hydrogenolysis of Hy-Bot without loss of activity and selectivity during reuses. The carbon balance was low for the hydrogenolysis of Hy-Bot over all catalysts if the main products are heavy hydrocarbons, whereas for the hydrogenolysis of squalane the carbon balance was kept near 100 %. 1H NMR spectra of the product mixture and thermogravimetric analyses of the product mixture and the recovered catalyst revealed that the formation of aromatic compounds, polymeric products, and coke was negligible for the carbon balance. In a model reaction using substrate compounds with a substructure of Hy-Bot, only 2,5-dimethylhexane, which has a C6 chain with two Cprimary−Ctertiary bonds, produced a cyclic product, 1,4-dimethylcyclohexane, which has a higher boiling point than the substrate. This dehydrocyclization reaction makes the product distribution in the hydrogenolysis of Hy-Bot more complex.

Original languageEnglish
Pages (from-to)2701-2708
Number of pages8
JournalChemCatChem
Volume9
Issue number14
DOIs
Publication statusPublished - 2017 Jul 24

Keywords

  • alkanes
  • biomass
  • hydrogenation
  • hydrolysis
  • ruthenium

ASJC Scopus subject areas

  • Catalysis
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Production of Gasoline Fuel from Alga-Derived Botryococcene by Hydrogenolysis over Ceria-Supported Ruthenium Catalyst'. Together they form a unique fingerprint.

  • Cite this