Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids

Shogo Arai, Kazunori Nakashima, Takanori Tanino, Chiaki Ogino, Akihiko Kondo, Hideki Fukuda

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)


The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.

Original languageEnglish
Pages (from-to)51-55
Number of pages5
JournalEnzyme and Microbial Technology
Issue number1
Publication statusPublished - 2010 Jan 7


  • Biodiesel fuel
  • Immobilization
  • Ionic liquid
  • Non-aqueous media
  • Stabilization
  • Transesterification
  • Whole-cell biocatalyst

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biochemistry
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids'. Together they form a unique fingerprint.

Cite this