Abstract
ADENOSINE is a potent modulator of transmitter release at a variety of synapses. The adenosine Al receptor is assumed to reside in presynaptic terminals and to function as a negative autoreceptor1. How adenosine reduces transmitter release is uncertain2; it may reduce the calcium influx during nerve terminal depolarization by either activating K+ currents3,4 or inhibiting Ca2+ currents5,6, although other mechanisms have been proposed7-9. We have directly measured intracellular Ca2+ concentrations of giant presynaptic terminals in the chick ciliary ganglion. We report here that adenosine inhibited the nerve-evoked Ca2+ influx in the termi-nal by activating Al receptors. Reduced Ca2+ influx was due largely to inhibition of ω-conotoxin GVIA-sensitive Ca2 + channels in the presynaptic terminal.
Original language | English |
---|---|
Pages (from-to) | 256-258 |
Number of pages | 3 |
Journal | Nature |
Volume | 365 |
Issue number | 6443 |
DOIs | |
Publication status | Published - 1993 Jan 1 |
ASJC Scopus subject areas
- General