Abstract
This study presents four modeling techniques for the prediction of hourly cooling load in the building. In addition to the traditional back propagation neural network (BPNN), the radial basis function neural network (RBFNN), general regression neural network (GRNN) and support vector machine (SVM) are considered. All the prediction models have been applied to an office building in Guangzhou, China. Evaluation of the prediction accuracy of the four models is based on the root mean square error (RMSE) and mean relative error (MRE). The simulation results demonstrate that the four discussed models can be effective for building cooling load prediction. The SVM and GRNN methods can achieve better accuracy and generalization than the BPNN and RBFNN methods.
Original language | English |
---|---|
Pages (from-to) | 90-96 |
Number of pages | 7 |
Journal | Energy Conversion and Management |
Volume | 50 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 Jan |
Keywords
- Cooling load
- Energy conservation
- Neural networks
- Prediction
- Support vector machine
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Fuel Technology
- Energy Engineering and Power Technology