Poroelastic parameters of sandstone under various combinations of pore pressure and confining pressure

Yuto Usui, Noriaki Watanabe, Akihisa Kizaki, Kiyotoshi Sakaguchi

Research output: Contribution to conferencePaperpeer-review

Abstract

A long-term monitoring of carbon dioxide (CO2) in a reservoir at depth is required for the geological storage of CO2. For this requirement, an inversion technique utilizing tilt data of the ground surface associated with migration of CO2 may be one of promising techniques. Since the inversion technique is based on the poroelastic theory, poroelastic parameters of reservoir rocks (e.g., sandstone) should be well understood to increase reliability of the monitoring technique. Understanding of poroelastic parameters is also essential in a geomechanical model simulation of the geological sequestration of CO2. For this purpose, focusing on a water-saturated part within a sandstone reservoir, a set of five kinds of laboratory tests were conducted on Kimachi sandstone saturated with water, to determine poroelastic parameters at various combinations of confining pressure (7-40 MPa) and pore pressure (5-25 MPa), namely various Terzaghifs effective stresses (2-35 MPa). Skemptonfs coefficient B and undrained bulk modulus were determined by B-test, in which volumetric strain and pore pressure changes with confining pressure. Drained bulk modulus and poroelastic parameter H (inverse number of poroelastic expansion coefficient) were determined by P-test and H-test, in which volumetric strain changes with confining pressure and pore pressure, respectively. Youngfs modulus and Poissonfs ratio were determined by both drained and undrained triaxial compression tests. Confining pressure and pore pressure dependencies for the poroelastic parameters were evaluated separately, revealing that both dependencies may be integrated by Terzaghifs effective stress dependency. That is, every poroealstic parameter (y) may be described by a function of Terzaghifs effective stress (σeff), y=a+b (1-e-σeff/10), where a and b are constants.

Original languageEnglish
Publication statusPublished - 2013
Event19th Formation Evaluation Symposium of Japan 2013 - Chiba, Japan
Duration: 2013 Sep 262013 Sep 27

Other

Other19th Formation Evaluation Symposium of Japan 2013
Country/TerritoryJapan
CityChiba
Period13/9/2613/9/27

ASJC Scopus subject areas

  • Economic Geology
  • Geochemistry and Petrology
  • Geology
  • Geotechnical Engineering and Engineering Geology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Poroelastic parameters of sandstone under various combinations of pore pressure and confining pressure'. Together they form a unique fingerprint.

Cite this