Polymer/ceramic PSP with reduced surface roughness for unsteady pressure measurement in transonic flow

Yosuke Sugioka, Daiju Numata, Keisuke Asai, Shunsuke Koike, Kazuyuki Nakakita, Tsutomu Nakajima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)


Polymer/ceramic pressure-sensitive paints (PC-PSPs) with reduced surface roughness were developed for measuring unsteady pressure fields in transonic flow. Four types of PC-PSPs, each having different particle size, mass content, solvent, and so on, were formulated and applied to transonic wind-tunnel tests of a Common Research Model airfoil. The effects of surface roughness on unsteady transonic flow on the airfoil were evaluated at Mach 0.85 and Reynolds number of 5.0 x 106. It was found that all four PC-PSPs had capabilities to measure time-series pressure distributions, but the location of a shock wave and the root-mean-square pressure fluctuations differed depending on types of PC-PSP. Among all tested PC-PSPs, the PC-PSP having arithmetic surface roughness of 0.5 μm and cutoff frequency of 3 kHz yielded data practically the same as that of a clean airfoil. Using this PC-PSP, propagation of pressure waves and oscillation of shock waves on the airfoil were clearly captured. A spectral analysis showed that the fundamental frequency of shock-wave oscillation agreed very well with that calculated based on the mechanism proposed by Lee. These results show that the selected PC-PSP can offer a powerful means to study transonic buffeting on airfoils and 3D wings.

Original languageEnglish
Title of host publication54th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103933
Publication statusPublished - 2016
Event54th AIAA Aerospace Sciences Meeting, 2016 - San Diego, United States
Duration: 2016 Jan 42016 Jan 8

Publication series

Name54th AIAA Aerospace Sciences Meeting


Other54th AIAA Aerospace Sciences Meeting, 2016
Country/TerritoryUnited States
CitySan Diego

ASJC Scopus subject areas

  • Aerospace Engineering


Dive into the research topics of 'Polymer/ceramic PSP with reduced surface roughness for unsteady pressure measurement in transonic flow'. Together they form a unique fingerprint.

Cite this