Plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance

Huijie Cheng, Jungang Hou, Hongmin Zhu, Xing Min Guo

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Environmental treatment over bismuth based catalysts due to their appropriate band structure and abundance is a promising process. However, the practical application of single-phase bismuth based catalysts is hindered by serious charge transport limitations. The plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalysts resolving the drawbacks of single-component photocatalysts have been successfully synthesized by anchoring Ag-AgCl nanocrystals on the surfaces of α/β-Bi2O3nanowire heterojunctions via the deposition-precipitation method assisted by the photo-reduction process. The as-prepared samples were characterized by a series of techniques, such as X-ray diffraction (XRD), electron microscopy (EM), Brunauer-Emmett-Teller analysis (BET), and UV-vis diffuse reflectance absorption spectra (UV-vis). The effects of the amount and the photo-reduction time of Ag-AgCl nanocrystals on the photocatalytic performance for the α/β-Bi2O3-Ag-AgCl composites were systematically investigated. Inspiringly, the plasmonic α/β-Bi2O3-Ag-10wt% AgCl-30 composites exhibit superior photocatalytic performance compared to α/β-Bi2O3nanowires for the degradation of Rhodamine B and acid orange 7 dyes due to the effective charge transfer between Ag-AgCl nanocrystals and α/β-Bi2O3nanowires. On the basis of photocatalytic activity and band structure analysis, a plasmonic Z-scheme photocatalytic mechanism is proposed; namely, two-step visible-light absorption is caused by the localized surface plasmon resonance of metallic Ag nanocrystals and the band gap photoexcitation of α/β-Bi2O3. This work could provide new insights into the fabrication of plasmonic Z-scheme photocatalysts with high performance and facilitate their practical application in environmental remediation issues. This journal is

Original languageEnglish
Pages (from-to)41622-41630
Number of pages9
JournalRSC Advances
Volume40
Issue number78
DOIs
Publication statusPublished - 2014

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Plasmonic Z-scheme α/β-Bi<sub>2</sub>O<sub>3</sub>-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance'. Together they form a unique fingerprint.

Cite this