Abstract
In this paper, we analyse the impact of a (small) heterogeneity of jump type on the most simple localized solutions of a 3-component FitzHugh-Nagumo- type system. We show that the heterogeneity can pin a 1-front solution, which travels with constant (non-zero) speed in the homogeneous setting, to a fixed, explicitly determined, distance from the heterogeneity. Moreover, we establish the stability of this heterogeneous pinned 1-front solution. In addition, we analyse the pinning of 1-pulse, or 2-front, solutions. The paper is concluded with simulations in which we consider the dynamics and interactions of N-front patterns in domains with M heterogeneities of jump type (N = 3, 4, M ≥ 1).
Original language | English |
---|---|
Pages (from-to) | 127-157 |
Number of pages | 31 |
Journal | Nonlinearity |
Volume | 24 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 Jan |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics
- Physics and Astronomy(all)
- Applied Mathematics