Physics and application of persistent spin helix state in semiconductor heterostructures

Makoto Kohda, Gian Salis

Research output: Contribution to journalReview articlepeer-review

24 Citations (Scopus)

Abstract

In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

Original languageEnglish
Article number073002
JournalSemiconductor Science and Technology
Volume32
Issue number7
DOIs
Publication statusPublished - 2017 Jun 27

Keywords

  • persistent spin helix
  • spin orbit interaction
  • spin relaxation
  • spintronics

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Physics and application of persistent spin helix state in semiconductor heterostructures'. Together they form a unique fingerprint.

Cite this